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Abstract
Suspensions of super-paramagnetic colloids trapped in the water–air interface
are an excellent model system for the study of two-dimensional systems. Here,
we investigate the structural behaviour of two-component mixtures of such
particles. The interparticle interactions are tunable through the application
of a magnetic field perpendicular to the air–water surface. Further, they
can be influenced by the choice of the relative magnetic susceptibilities of
the two colloidal species. We have performed integral equation theory and
computer simulations to study the static properties of such a binary super-
paramagnetic system. For all susceptibility ratios studied, no macroscopic phase
separation takes place; the fluid phase remains macroscopically homogeneous
but microphase structuring occurs: the interactions with the large particles lead
to a clustering of the smaller particles. We combine structural information
in reciprocal space together with morphological measures in real space to
characterize the ordering of the two species in the binary mixture.

1. Introduction

Super-paramagnetic colloidal particles that are confined by gravity on the two-dimensional
water–air interface of a pendant droplet are excellent realizations of strictly two-dimensional
(2D) classical many-body systems; references [1, 2] provide recent reviews on the new physics
in these 2D systems. An external magnetic field, directed perpendicularly to the droplet
surface, induces magnetic moments on these particles that align themselves with the applied
field. Due to the super-paramagnetic character of the particles, thermal fluctuations of the
magnetic moment around the preferred direction are negligible; thus the magnetic moments
of the particles are fixed in the direction prescribed by the external field. The strength of the
induced dipole moment, on the other hand, can conveniently be tuned by the magnitude of the
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external magnetic field. This leads to an effective repulsion between the spheres through their
induced parallel dipole moments.

While a one-component system of almost monodisperse particles has been extensively
studied both for the fluid and for the crystalline phases [3–13], only recently have two-
component mixtures of such systems been investigated [14–16]. Of particular interest here
is to tune, via control of the susceptibility asymmetry, the so-called non-additivity of the
mutual interaction potentials between the species of the mixture. For positive non-additivity,
macroscopic phase separation may take place [17, 18] whereas, for negative values of the same,
microphase separation and clustering of the particle species in domains within the fluid might
occur—qualitatively similar to results obtained in three spatial dimensions and effective one-
component systems [19–25]. A wide variety of systems displaying circular and striped pattern
formation has been analysed, such as magnetic garnets, Langmuir monolayers and thin films of
adsorbates [26, 27]. Stable cluster formation has been observed in systems interacting via the
competition between a short-ranged attraction and a long-ranged repulsion [28] and it can occur
even in the complete absence of attractions, provided that the repulsive potential is bounded and
decays sufficiently rapidly to zero at large interparticle distances [29]. The competition between
a short-ranged Lennard-Jones-like and a long-ranged repulsive Yukawa potential leads to a
cluster formation that has been proved by ground-state energy calculations [30]. This system
even exhibits a gel phase driven by the inherent self-generated cluster polydispersity [31]. Also
nanoparticles deposited at the air–water interface show spontaneous patterning in a cluster-like
structure [32].

In this work, we investigate the liquid structure and local ordering in a 2D binary
mixture interacting via dipole–dipole repulsions using integral equation theories and computer
simulations that compare very well with each other and with previously published experimental
results [16]. Macrophase separation (demixing) does not take place for any combination of
physical parameters, a property that can be traced back to the fact that the non-additivity
parameter of the interactions is negative irrespective of the value of the magnetic susceptibility
ratio. Instead, microphase structuring with a partial clustering of the weaker species takes
place, with a sponge-like structure emerging. Partial structure factors and a morphological
characterization of the particle positions obtained in computer simulations and employing the
Euler characteristic [33, 34] are used to characterize the ordering of the two species in the
uniform mixture. This partial clustering has been explicitly confirmed experimentally [16]; in
this work, we present a detailed analysis of the microphase structuring for a wide spectrum of
relevant physical parameters.

The rest of this paper is organized as follows. In section 2 we define the system and
the associated interparticle interactions. The integral equation theory is concisely presented
in section 3. Results for the partial structure factors are presented in section 4 and the
morphological analysis in section 5. Finally, in section 6 we summarize and draw our
conclusions. Some technical details on fast two-dimensional Fourier transforms are relegated to
appendix A and mathematical material on the derivation of the Euler characteristic on a square
lattice is presented in appendix B.

2. The systems and the interaction potentials

2.1. One-component system

We consider a two-dimensional system of N colloidal particles in a plane of surface area A.
With ρ = N/A denoting the area density of the particles, we introduce the average interparticle
distance a ≡ 1/

√
ρ as a characteristic length scale of the system. The motion of the particles
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is confined by a water–air interface. We expose the system to an external static magnetic field
B0 that induces on each particle a magnetic moment m. We restrict ourselves to the case of
a magnetic field pointing perpendicular to the plane. The particles are assumed to be super-
paramagnetic, i.e., the magnetic dipole of each particle aligns perfectly with the external field.
Thus, it holds that

m = χB0, (1)

where the proportionality constant χ is the particles’ magnetic susceptibility. For the system
at hand, the dipole–dipole interaction between two particles with parallel dipole moments
mi = χB0 and coordinates ri , i = 1, 2, reads as [10, 35]2

u(r1, r2) = (χ B0)
2

|r1 − r2|3 (1 − 3 sin2 ω cos2 θ), (2)

where ω is the angle between the field and the vertical on the confining plane and θ the
angle between mi and the direction of the connecting vector, r1 − r2. For the case at hand
(perpendicular field), we have ω = 0◦ and θ = 90◦; thus equation (2) simplifies into

u(r) = (χ B0)
2

r 3
, (3)

where r = |r1−r2|. For the purely repulsive potential at hand, the system is thermodynamically
stable on the basis of the dipole–dipole interaction alone; an additional, short-range repulsion
is not necessary to stabilize the system at the relevant experimental densities, as the typical
interparticle distances are large enough (compared to their physical size) and only the dipole–
dipole interaction is felt3. Comparisons with experimental results [12, 16] fully support the
above modelling of the interactions and confirm its realistic character. The particles are thus
treated as point-like. Using the aforementioned length scale a, we introduce the dimensionless
coupling strength �, defined as

� = β
(χ B0)

2

a3
, (4)

where β = 1/(kBT ), with kB being Boltzmann’s constant and T being the temperature. Clearly,
� expresses the ratio of the kinetic versus typical potential energy of a particle and allows for
the distinction of the weak (� � 1), intermediate (� ∼= 1) and strong (� > 1) regimes.
Rescaling the particle coordinates with the interparticle distance, ri → xi ≡ ri/a, and using
equations (1) and (4), we can write the interaction potential, equation (3), in the form

βu(x) = �

x3
, (5)

with x = |x1−x2|. All structural and thermodynamic properties of such a system depend solely
on the coupling strength � and not separately on temperature and density.

2.2. Two-component system

Generalizing the ideas above, we now allow for a second component to be present in the
system. Each component is characterized by its partial density ρ1, ρ2 and its susceptibility
χ1, χ2, respectively. In the experimental setup, the particles acquire their super-paramagnetic

2 Equation (2) above holds for two permanent magnetic dipoles. For two induced magnetic dipoles, the expression
must be multiplied by a factor 1/2. We ignore this factor because it only leads to a trivial rescaling of the coupling
strength �; see, e.g., [10].
3 The argument applies as long as the field does not deviate from the vertical direction by more than, roughly, 30◦. In
contrast, dipole–dipole attractions that lead to chain formation arise and a short-range steric repulsion is necessary to
stabilize the system [10].
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character through doping with Fe2O3. For a given doping density, the bigger the particle is, the
larger its susceptibility. Therefore, in what follows, we refer to the particles having the larger
susceptibility as the ‘big’ particles, although the physical size of the colloids does not enter in
the pair potentials. Accordingly, we are now dealing with three different interactions:

βui j(x) = �i j

x3
, i, j = 1, 2. (6)

In equation (6) above, x stands for the distance between any two particles scaled over
the average interparticle distance between big particles, x ≡ r/a11, where a11 = 1/

√
ρ1.

Therefore, the expressions for the interaction strengths �i j are generalized to

�i j = βχiχ j B2
0

a3
11

, i, j = 1, 2. (7)

The two-component system is completely characterized by three quantities: the density ratio
ρ2/ρ1, the susceptibility ratio χ2/χ1 and one of the three interaction strengths, which we pick
as �11 in what follows.

3. Integral equation theory

3.1. One-component system

The determination of the pair structure of a uniform fluid amounts to the calculation of the radial
distribution function (rdf) g(r) and the direct correlation function (dcf) c(r). By introducing
the total correlation function h(r) = g(r) − 1, the former two quantities are connected via the
Ornstein–Zernike (OZ) relation [37]

h(r) = c(r) + ρ

∫
ddr ′c(|r − r′|)h(r ′), (8)

with the dimension of the system d = 2 for the case at hand. The OZ relation is exact and
couples two unknown functions, h(r) and c(r), via an integral equation. A second equation is
required in order to determine these. The total correlation function can be expressed in terms
of the direct correlation function as

h(r) = exp[−βu(r) + h(r) − c(r) + B(r)] − 1, (9)

where u(r) denotes the pair potential and B(r) is the so-called bridge function [37]. By
introducing certain approximations for the bridge function, an approximate equation to the OZ
relation, called closure, can be supplied. The system is now fully determined and both the rdf
as well as the dcf can be obtained by solving the two coupled equations numerically. By setting
the bridge function equal to zero, we obtain the hypernetted chain (HNC) closure, which has
proved to yield good results for long-ranged pair potentials in three dimensions. The Percus–
Yevick (PY) closure arises by choosing the following expression for the bridge function:

BPY(r) = −[h(r) + 1 − c(r)] + 1 + ln[h(r) + 1 − c(r)]. (10)

The PY closure furnishes accurate results for short-range interactions (such as the hard-sphere
potential) in three dimensions.

Once h(r) is known, another interesting and important quantity to describe the structure
of the system is the structure factor S(k). It can be expressed simply by means of the Fourier
transform of the total correlation function h̃(k):

S(k) = 1 + ρh̃(k). (11)

The structure factor can be directly measured by scattering techniques, and is therefore a
quantity of paramount importance for comparing theory and experiment.
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3.2. Two-component system

The extension from the one-component system to the multicomponent system is
straightforward. Consider a two-component system consisting of N1, N2 particles enclosed
in a macroscopic area A and described by the three pair interactions ui j(r), i, j = 1, 2, r
denoting the distance between any two particles. The pair structure is fully determined by
three correlation functions hi j (r), i � j = 1, 2; due to symmetry, hi j (r) = h ji(r). The
generalization of the OZ relation for multicomponent mixtures reads as

H̃(k) = C̃(k) + C̃(k) · D̃ · H̃(k), (12)

where H̃(k) and C̃(k) are 2 × 2 symmetric matrices with elements

[H̃(k)]i j = h̃i j(k) and [C̃(k)]i j = c̃i j(k), (13)

and D̃ is a 2 × 2 diagonal matrix of the partial densities,

[D̃]i j = ρiδi j . (14)

The linear algebraic system (12) provides three independent equations with six unknown
functions h̃i j(k) and c̃i j(k). Therefore, three closure relations have to be supplied to determine
the unknown functions. Apart from the generalizations of the aforementioned HNC and PY
closures, a particularly reliable relation is provided by the Rogers–Young closure [36] that
‘interpolates’ between the two and has the form

hi j (r) = exp[−βui j(r)]
[

1 + exp[γi j(r) fi j(r)] − 1

fi j(r)

]
− 1, (15)

where γi j(r) = hi j(r) − ci j(r) and fi j(r) = 1 − exp(−αi jr) and the ‘mixing functions’ fi j (r)

include tunable parameters αi j that are chosen in order to enforce thermodynamic consistency.
In this work, we employ a single self-consistency parameter α ≡ αi j . This turns to be sufficient
to bring about agreement with simulation and experiment and it guarantees the equality between
the total virial and fluctuation compressibilities4. The three partial structure factors for the two
component system read as

Si j (k) = δi j + √
ρiρ j h̃i j(k). (16)

In solving the two coupled integral equations, the OZ relation and the closure, one has
to invoke an iterative procedure that requires the repeated calculation of convolution integrals.
These are evaluated most efficiently and rapidly in reciprocal space, by making use of the tool
of fast Fourier transforms. Although this procedure is straightforward in three dimensions, in
which the Fourier transform of a spherosymmetric function takes the form of a one-dimensional
sine transformation, in two dimensions things are more complicated. We have circumvented
this problem by applying the procedure of Caillol et al [38]. A short account of this technique
is given in appendix A.

4. Correlation functions

In this section, we present results for the structure for the one-component as well as for the two-
component two-dimensional system of super-paramagnetic colloids exposed to a perpendicular,
static external magnetic field. To corroborate the (approximate) results of the numerical
solutions of the liquid integral equation theory derived in section 3, we also have performed
extensive Brownian dynamics (BD) computer simulations [42]. We employed a square box
with periodic boundary conditions5. We varied the size of the simulation box in order to check

4 An alternative approach is to use all three αi j s to match the partial compressibilities also [39].
5 We stress that the dipole–dipole interaction in two dimensions is integrable and this is why we do not have to use
more sophisticated schemes to treat this interaction, as is common in three dimensions [40].
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Figure 1. The radial distribution functions for the one-component system at (a) � = 1.44 and
(b) � = 8.2. The Brownian dynamics (BD) results are compared to the hypernetted chain (HNC)
and Rogers–Young (RY) closures.

carefully for finite-size effects. Typically, we found about 2000 particles to be sufficient for the
latter to be negligible. The timestep for the integration of the overdamped Langevin equations
of motion was �t = 10−4ρD, where D is the short-time diffusion constant of the particles. A
total of 10 000 timesteps were used to equilibrate the system, and during a further 106 timesteps
the statistics were gathered.

4.1. One-component system

In figure 1, typical results for the g(r) at strong coupling, � = 1.44 and � = 8.2, are shown.
It is somewhat surprising that the agreement between HNC and BD is rather poor; based on
experience for long-range interactions in three dimensions, one might have expected a better
agreement. Apparently, space dimensionality is relevant. As the HNC implicitly contains
elements of a ‘mean-field picture’ [43], it is plausible to assert that its quality worsens as d
diminishes. The Rogers–Young closure provides much better agreement, although also in this
case the amount of correlation is slightly underestimated. The agreement between the RY
closure and the simulation worsens somewhat as the coupling grows but it should be kept in
mind that at � ∼= 10 the system crystallizes [13]; thus for � = 8.2 we are already dealing with
a strongly correlated fluid. As far as experiments are concerned, we refer the reader to [41],
where nearly identical results for g(r) have been obtained by video microscopy.

4.2. Two-component system

For the rest of this work, we turn our attention to the much richer two-component case. For
all tested parameter combinations, the RY closure almost perfectly matches the structural
correlations predicted by the simulations. As a representative result, we provide one parameter
combination in figure 2: it shows excellent agreement between the simulation data and the RY
closure whereas, as could be anticipated from the one-component case, the HNC fails to be
as accurate. Excellent agreement with experimental structural data for a different parameter
combination has been reported in [16]. Therefore, in what follows, we rely on the RY closure
to analyse the pair structure of the fluid regime. We vary the relevant system parameters, �11,
ρ2/ρ1 and χ2/χ1, and discuss the concomitant effects on the structural correlations.
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Figure 2. The partial structure factors S11(k), S22(k), and S12(k) for the two-component system.
Computer simulation results obtained by Brownian dynamics (BD) are compared to the HNC and
RY closure. The parameter combinations here read as �11 = 3.0, ρ2/ρ1 = 0.5 and χ2/χ1 = 0.5.

Let us first increase the coupling strength, covering a range from �11 = 1.0 to 9.0. Results
for the radial distributions functions gi j(r) are shown in figure 3; for all these values, the
system remains fluid. At the same time, we keep the density and susceptibility ratio fixed at
ρ2/ρ1 = 0.5 and χ2/χ1 = 0.5. For increasing interaction strength, the height of the main peak
of all three distribution increases steadily, whereas the peak position r , measured in units of
a11, does not shift. The result is physically reasonable: we can assume that �11 is increased
by making the external field B0 stronger but otherwise leaving the particle numbers untouched.
Then, the typical interparticle distances within the first coordination shell remain unchanged
and only the degree of local ordering is affected, due to the increasingly strong repulsions. Note
also that the extent of the ‘correlation holes’ bi j , i.e., the small-r region for which gi j(r) ∼= 0,
differs between the three distribution functions. Indeed, the ordering u22(r) < u12(r) < u11(r)

leads to the inequalities b22 < b12 < b11.
These features are reflected in the structure factors, shown in figure 4. In reciprocal space,

the height of the principal peak position grows as the coupling increases. At the same time, the
structure factors reveal a striking feature that cannot be distinguished by looking at the real-
space distribution functions alone: the structure factor S22(k) shows a pre-peak at, roughly,
kclus/

√
ρ1

∼= 3.5 that precedes the main peak, located at kpart/
√

ρ1
∼= 8.5. The latter signals

ordering with a length scale λpart = 2π/(8.5
√

ρ1)
∼= 0.5/

√
ρ2, whereas the former points

to the existence in the system of spatial structures formed by the small particles that have
a larger typical length scale λclus

∼= 1.27/
√

ρ2. Note that λpart is smaller than the typical
interparticle distance a22 = 1/

√
ρ2 between the small particles by about a factor 2. This
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Figure 3. Partial radial distribution functions for the two-component system. Varying the interaction
strength �11, we keep the other parameters fixed: ρ2/ρ1 = 0.5 and χ2/χ1 = 0.5.

implies that the latter are ‘squeezed together’ due to the influence of the big ones. Thus,
λpart corresponds to the small–small interparticle distance, whereas λclus > λpart describes,
as will be explicitly demonstrated shortly, the extent of clusters of tightly squeezed small
particles, nested in the voids formed by the big ones. The fact that the kclus-pre-peak height
is not particularly prominent points to rather diffuse clusters with an ill-defined boundary. Yet,
their presence is clearly signalled by the pre-peak, whose position (and hence the cluster size)
is insensitive to the coupling. We emphasize here that this is a novel phenomenon, which
persists for a wide range of parameter combinations. Of particular importance is the absence
of any similar feature in the big–big structure factor S11(k) and in the cross-structure factor
S12(k). The physical origin of this partial clustering can be traced to the particular form of
the interactions. A moderate amount of negative non-additivity (see below) as well as the
ordering u22(r) < u12(r) < u11(r) is necessary, which explains the fact that partial clustering is
absent both for additive hard-sphere mixtures [44] and for the positively non-additive Asakura–
Oosawa model [45], to mention some popular models of liquid-state and soft matter theory.

Let us then investigate the evolution of the structural characteristics when the other two
free parameters of the mixture are varied. In order to examine the influence of the composition,
we keep the coupling constant fixed at �11 = 3.0 and the susceptibility ratio at χ2/χ1 = 0.7.
Subsequently, we vary the density ratio starting from a majority of big particles and ending up
with a majority of the small one. Results for the structure factors are shown in figure 5. The
height of the main peak of the structure factor remains roughly unchanged for the big particles;
however, its position moves clearly to the right as small particles are added. This points to a
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Figure 4. The partial structure factors S11(k), S22(k), and S12(k) for the two-component system.
The interaction strength �11 is varied whereas the other parameters are kept fixed: ρ2/ρ1 = 0.5,
χ2/χ1 = 0.5.

tendency of the big particles to move closer upon addition of the small ones, a feature explicitly
confirmed by the evolution of their partial distribution function g11(r), shown in figure 6. The
small particles require space for themselves and are thus ‘pushing’ the big ones closer to each
other; the interaction u11(r) is becoming effectively softer, a feature also confirmed by the
increase in the partial compressibility χ1 = S11(k = 0)/(kBTρ1); see figure 5. However,
this partial compressibility never diverges; thus the system remains mixed. Therefore, the
reordering of the big particles in the presence of the small ones is more subtle: big particles are
coming closer together and they open up in this way space for the small ones. The two regions
of space, however, are closely intertwined with each other, as no macrophase separation takes
place.

Let us now turn our attention to S22(k) shown in figure 5. The wandering of the ‘particle
peak’ kpart at higher k-value upon increasing ρ2 simply describes the decreasing interparticle
separation between the small particles as their population grows. The ‘cluster pre-peak’ kclus

is also present, albeit weak, and its position remains unchanged as ρ2 grows. The physical
interpretation is that more and more small particles are squeezed into the voids left by the
big ones but the size of these voids (small-particle clusters) is insensitive to ρ2. Note that for
ρ2/ρ1 = 0.1 both the cluster pre-peak and the particle peak are weak, due to the low partial
concentration. However, the cluster pre-peak survives also when the small particles are in the
majority.

Finally, let us fix the coupling strength and the density ratio at �11 = 3.0 and ρ2/ρ1 = 0.5
and vary the susceptibility ratio. The corresponding structure factors can be seen in figure 7.
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Figure 5. Partial structure factors for the two-component system. Here the density ratio is varied
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Figure 6. The radial distribution function g11(r) of the big particles for the parameter combination
of figure 5.

For all investigated parameter combinations, the partial structure factors remain finite for k = 0;
therefore a fluid–fluid demixing is not expected for the system at hand. Again, however, the
cluster pre-peak in the structure factor S22(k) is visible, whereas no such signature appears
in S11(k). Note that for low susceptibility ratio, χ2/χ1 = 0.1, the pre-peak is at least as
pronounced as the ‘main’ peak: as the direct interaction scales as χ2

2 but the cross-interaction as
χ1χ2, the particle–particle correlations are weaker than the cluster ones. At the other extreme,
χ2/χ1 = 0.7, the pre-peak is still present but is clearly subdominant to the main peak. Indeed,
there are two trivial limits for the two-component system, when it is looked upon through
its dependence on the susceptibility ratio ξ ≡ χ2/χ1, where 0 � ξ � 1. At ξ = 0, the
small particles are ideal and experience no forces, neither among themselves nor with the big
particles. In this case, S22(k) = 1 and we are dealing with a one-component system at � = �11.
At the other extreme, ξ = 1, the two species become identical and there is just one structure
factor at a rescaled coupling parameter � = �11(1 +α)3/2, where α ≡ ρ2/ρ1. Also in this case
there is no subclustering phenomenon. We expect, therefore, that the pre-peak in S22(k) exists
in some domain ξ ∈ [ξ1, ξ2] ⊂ [0, 1]. We were able to show that ξ1 is at least as small as 0.1
and ξ2 at least as large as 0.7.

A key quantity in understanding the phenomena at hand is the so-called non-additivity
parameter �, which can be derived from the interaction potentials ui j(r) as follows. First,
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Figure 7. Partial structure factors for the two-component system and their dependence on the
susceptibility ratio χ2/χ1. The other two parameters are fixed at �11 = 3.0 and ρ2/ρ1 = 0.5.

a mapping onto effective hard-disc diameters σi j is performed according to the Barker–
Henderson procedure:

σi j =
∫

dr
{
1 − exp[−ui j(r)/kBT ]} . (17)

Then, � is defined as

� = 2σ12 − (σ11 + σ22), (18)

the same quantity that is shown in figure 8.
The dependence of �̃ ≡ �/(σ11 + σ22) on ξ is shown in figure 8. Clearly, the case ξ = 0

leads to �̃ = −1, whereas ξ = 1 corresponds to �̃ = 0. The negativity of �̃ for all ξ -values
provides an explanation for the absence of macrophase separation because it expresses the
physical fact that the particles on average dislike the ‘opposite’ species less than they dislike
their own. The negativity of �̃ together with the property u22(r) < u12(r) < u11(r) for all r
lies at the heart of the subclustering phenomenon for the small particles. Indeed, by trying to
create many contacts between the small particles, the system is reducing its energy due to the
first part of the inequality above. At the same time, a full separation between big and small is
also unfavourable, since the big particles would then have mostly contacts with each other, a
feature that is disfavoured by the second part of the inequality. The system then finds the best
compromise by creating irregular clusters of the small particles, which are nested in the voids
formed by the big ones. As the topology and morphology of this mutual arrangement cannot
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Figure 8. The non-additivity parameter � of the two-component magnetic mixture (equation (18))
against the susceptibility ratio χ2/χ1.
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Figure 9. Simulation snapshot of the big particles (left panel) and the small particles (right panel)
for the following parameters: �11 = 3.0, ρ2/ρ1 = 0.5, χ2/χ1 = 0.5.

be unambiguously determined based on the reciprocal-space information alone, we proceed in
the following section with a complementary morphological analysis in real space.

5. Morphological analysis

A real-space perspective of the spatial arrangements of the two components is shown in figure 9,
a typical simulation snapshot of the big and small particles, respectively, for the parameter
combination �11 = 3.0, χ2/χ1 = 0.5 and ρ2/ρ1 = 0.5. Here, the total system contains
1200 big and 600 small particles. It can be seen that the big particles have a semi-compact
arrangement: whereas in most parts of the snapshot they are close to each other, there exist also
void regions in which the small particles fit perfectly. Note that the void sizes in the left part
of figure 9 are not visible in reciprocal space: the only length scale featuring prominently as
a peak in S11(k) is the one corresponding to the typical interparticle separation. Since the big
particles have to make space for the voids, this scale is smaller than a11 (which is the typical
interparticle distance without small particles); hence the shift of the peak of S11(k) at larger
k-values observed in figures 5 and 6.

The mutual arrangement and the nesting of the irregular clusters of small particles in the
voids of the big ones is made manifest in figure 10, where we show big and small particles
together. It is evident that small particles cluster in the holes formed by the ‘sponge-like’
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Figure 10. Simulation snapshot of big particles and small particles together, for the parameter
combination of figure 9.

(This figure is in colour only in the electronic version)

structure of the big ones. Yet, an inspection with the bare eye is dangerous and it can lead to
erroneous results. It is pertinent that we quantify the morphology of the mixture, and for this
purpose we employ in what follows a robust measure borrowed by integral geometry, namely a
topological invariant of the pattern formed by the particles, the Euler characteristic X [33, 34].

The Euler characteristic is first defined for any closed, bounded, and convex set (closed
body) K in an d-dimensional space Ed , with a regular boundary. We denote the set of all such
bodies as K. For such bodies, X is defined as

X (K ) =
{

1, for convex K ∈ K ⊂ Ed, K 
= ∅,

0, for K = ∅.
(19)

The definition can be extended to bodies with irregular boundaries (such as polygons in two
dimensions) by considering the smooth ε-parallel body, Kε , consisting of the union of K and
all points within a distance �ε from the boundary of K [33]. By expanding the d-dimensional
volume of Kε , in powers of ε, the Euler characteristic of the irregular body is then proportional
to the coefficient of the power εd . It has precisely the same value, 1 for convex bodies and 0
for the empty set, as given by equation (19) above for bodies with a smooth boundary. Further,
the definition of X can be extended to non-convex shapes containing an arbitrary number of
holes and belonging to the set R of subsets of Ed that are constructed from finite unions and
intersections of convex bodies including the empty set ∅ (clearly, K ⊂ R). The extension of X
to such sets follows from the property of sub-additivity:

X (A ∪ B) = X (A) + X (B) − X (A ∩ B), (20)

for any A, B ∈ R. Notice that the Euler characteristic of the union of two sets A and B is the
sum of the individual ones minus the Euler characteristic of the intersection6.

6 In fact, the Euler characteristic is just one of the d + 1 Minkowski functionals [33, 34] of a body embedded in
d-dimensional Euclidean space, and all share the sub-additivity property; in three dimensions, the four Minkowski
functionals are the volume, exposed area, integral mean curvature and Euler characteristic X ; in two dimensions, they
are the covered area, exposed line length and, again, X . For the volume, area and length the sub-additivity property is
evident.
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The morphological analysis of the spatial pattern formed by the particles was carried out
as follows. The particle positions of any snapshot were marked and covering circles of varying
radii R0 were superimposed on the position of each particle. The circles were filled, resulting
thereby in a spatial black-and-white pattern whose appearance depends on R0 as well as on the
original particle positions. Interpreting the black parts as ‘full’ and the white parts as ‘empty’,
the pattern consists, for any choice of R0, of a number of mutually disconnected components
D(R0) as well as a number of holes H (R0). The Euler characteristic X (R0) is an integer
number and in two dimensions it is simply expressed as7:

X (R0) = D(R0) − H (R0). (21)

For instance, X = 1 for a circle but X = 0 for a ring, X = −1 for an eight-shaped union of two
rings and so on. For the system at hand, we have at small R0 as many mutually disconnected
components as particles, D = N ; there are no holes (H = 0) and hence X/N = 1. For
very large covering radii, the whole pattern is black, D = 1, H = 0 and X/N → 0 for
N → ∞. Information on the topology of the mixture is gained by the behaviour of the X/N
versus R0-curve at intermediate R0 values.

The recognition of disconnected components and holes may appear straightforward at first
yet it is a challenging problem of image analysis and processing. The problem can be simplified
by digitizing the image created by the covering circles. To this end, we have imposed a fine
quadratic grid on the picture, with lattice constant l = 0.05R0. Any quadratic pixel was
assigned the value ‘empty’ or ‘full’ according to the following criterion: if the centre of a pixel
is closer to the centre of any circle than the radius of the latter, the pixel is ‘full’; otherwise,
it is ‘empty’. We assign now ‘Ising-like spin variables’ u(i, j) that live on the dual lattice,
characterized by a binary ‘emptiness variable’, u(i, j) = 1 if the pixel at which u(i, j) is
centred is empty and u(i, j) = 0 if it is full. Here, i , j are integer indices sequentially labelling
the lattice sites in the horizontal and vertical directions, respectively; i, j = 1, 2, . . . , L in an
L×L square lattice. The digitized image generates therefore a morphological lattice model and
the Euler characteristic X[u] of each configuration [u] = {u(i, j)}, i, j = 1, 2, . . . , L, can be
calculated locally and involves up to four-spin interactions only. It is given by the expression

X[u] =
∑

i

∑
j

{−u(i, j) + u(i, j)[u(i + 1, j) + u(i, j + 1)]

− u(i, j)u(i + 1, j)u(i, j + 1)u(i + 1, j + 1)}. (22)

The double sum runs over all lattice sites. Periodic boundary conditions were employed for
the pixels at the borderlines of the L × L-square. For a sketch of the derivation of equation (22)
above, we refer the reader to appendix B and for a more general discussion to the appendix
of [33]. The analysis was carried out for a large number of simulation snapshots and the
expectation value 〈X〉/N was calculated as a function of R0.8

Results of this procedure are shown in figure 11 for a particular parameter combination
(�11 = 3.0; χ2/χ1 = 0.5 and ρ2/ρ1 = 0.5) for which the structural data featured a cluster pre-
peak at S22(k). The quantity shown is always 〈X〉/N , where N is the number of big or small
particles, depending on the curve. A useful comparison is provided by also considering the
same curves drawn for a one-component system at the same �11-value as well as for an ideal
gas. Comparing the Euler characteristic curve of the small particles with that of the ideal gas,

7 We emphasize the space dimensionality because in three dimensions things are different: although X remains an
integer, it has there the form X = D + C − T , where C is the number of cavities (as in a hollow sphere) and T the
number of tunnels (holes). Note also that our definition of X differs by the one used in other contexts by a trivial
factor 2.
8 Note that the quantity 〈X〉 is extensive, a property that qualifies the latter to be used as a ‘topological order parameter’
in morphological models [33].
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Figure 11. The expectation value of the Euler characteristic (per particle) plotted against the
covering radius for a binary mixture of 1200 big and 600 small particles and for the parameters
�11 = 3.0 and χ2/χ1 = 0.5. The results are averaged over several simulation snapshots. For
comparison, the corresponding curves of the ideal gas and a one-component system are also shown.

we see that the former decays to zero much more slowly than the latter; and the most negative
part of the former occurs for larger covering radii than that of the former. Ideal particles form
‘clusters’ just by accident, as a result of the Poisson process of their insertion in the plane.
Interacting particles form clusters in order to optimize the free energy of the mixture. The
latter are thus larger and hence a larger covering radius is necessary to create holes between
them.

The position of the most negative value of 〈X〉/N for the small particles occurs at
R0

√
ρ1

∼= 1 and can be identified with half the typical cluster size, λclus/2. Thus λclus
√

ρ1
∼= 2,

a value agreeing well with the structural data extracted from figure 4. There, the estimate
λclus

√
ρ2

∼= 1.27 was made; thus λclus
√

ρ1
∼= 1.8 for the density ratio at hand. The

morphological estimate is based on the consideration that, when the covering circles attain
a value equal to half the cluster size, covering patches from neighbouring clusters overlap,
leaving one or more holes in the space in between. And since every hole contributes −1 to the
Euler characteristic, the minimum of 〈X〉 is expected for such values of R0. Closing these holes
now requires a much larger cover radius than in the ideal gas system wherein particles are more
or less evenly dispersed over the whole area.

The 〈X〉 versus R0 curves for the big particles reveal that the gaps between them are
smaller than for the one-component case. This is consistent with the fact that the big particles
are rearranging and open small voids in which the small ones are accommodated. In addition,
the most negative value of 〈X〉 is achieved for the one-component system. This is also
reasonable, since the large voids that open up for the small particles constitute a single hole
and thus drive 〈X〉 less negative than the many smaller holes present in the absence of the
voids. The 〈X〉 versus R0 curves of the big and the small particles have very different shapes;
there is no way to scale one on top of the other. This reveals also from the morphological point
of view the very different spatial arrangements of the two species in the presence of one another.

6. Conclusions

We have investigated partial cluster formation in a two-component colloidal model system
characterized by simple dipole–dipole interactions. The system is experimentally accessible
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and our results have been confirmed by measurements for specific parameter combinations [16].
The small-particle clusters do not form well-separated, monodisperse domains with a well-
defined geometrical shape, such as those seen for interactions with a short-range attraction
and a long-range repulsion [22]. They are rather diffuse, possesses a percolating sponge-
like topology, with a significant number of holes. We have analysed this phenomenon in
terms of the non-additivity parameter of the mixture and we put forward the assertion that
it should be general for all mixtures with � < 0, whose interactions are purely repulsive and
additionally obey the inequalities u22(r) < u12(r) < u11(r). Future work will focus on ordered
phases (alloy formation) on arrested states of such mixtures and on the effects of tilted external
magnetic fields.
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Appendix A. Two-dimensional Fourier transforms

In this appendix, we briefly discuss an algorithm due to Caillol et al [38], which allows for the
accurate calculation of the Fourier transform (FT) in two dimensions and takes advantage of fast
Fourier transform (FFT) techniques. In contrast to the three-dimensional case, the occurring
integrals do not reduce to one-dimensional sine- or cosine-integral transformations, a property
that calls for the implementation of special manipulations. The two-dimensional FT f̃ (k) of a
radially symmetric function f (r) takes in polar coordinates the form

f̃ (k) =
∫ 2π

0
dϕ

∫ ∞

0
dr r exp(ikr cos ϕ) f (r), (A.1)

with the imaginary unity i. Taking into account the integral representation of the Bessel function
of zeroth order J0(z) as

J0(z) = 1

2π

∫ 2π

0
dϕ exp(iz cos ϕ), (A.2)

we can rewrite equation (A.1) as

f̃ (k) = 2π

∫ ∞

0
dr r J0(kr) f (r), (A.3)

which defines the Hankel transform. The task of calculating convolution integrals in two spatial
dimensions is thus formally reduced to calculating the Hankel transform (and its inverse, which
can be easily derived using the steps above). However, equation (A.3) is not directly amenable
to FFT techniques, since the integration kernel is the Bessel function J0(kr) and not sin(kr), as
is the case in three dimensions.

To deal with this difficulty, one first introduces new variables, R and K , that are connected
to the old ones by the following relation:

r = exp(R),

k = exp(K ).
(A.4)

Passing over to the new coordinates, equation (A.3) takes the form

f̃ (exp(K )) = exp(−K )

∫ ∞

−∞
dR exp(R) f (exp(R)) exp(R + K )J0(exp(R + K )). (A.5)
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The right-hand side of equation (A.5) can be rewritten as a convolution type integral:

f̃ (exp(K )) = 4π exp(−K )

{
Re

∫ ∞

0
dt�(t)M(t) exp(iK t)

}
, (A.6)

where

�(t) = 1

2π

∫ ∞

−∞
dR exp(R) f (exp(R)) exp(iRt) (A.7)

and

M(t) = 1

2π

∫ ∞

−∞
dR exp(R)J0(exp(R)) exp(−iRt). (A.8)

The integral M(t) can be calculated analytically; see [38]. Thus, it remains to calculate
�(t). For this purpose, an arbitrary small value rm is chosen, corresponding via equation (A.4)
to some Rm = ln(rm) < 0, |Rm| � 1, which is used to split the integral:

∫ ∞
−∞ = ∫ Rm

−∞ + ∫ ∞
Rm

.
Changing the variable R → R + Rm at the second integral, we obtain

�(t) = 1

2π

∫ Rm

−∞
dR exp(R) f (exp(R)) exp(iRt)

+ 1

2π
exp(iRmt)

∫ ∞

0
dR exp(R + Rm) f (exp(R + Rm)) exp(iRt). (A.9)

For sufficiently large |Rm|, we can approximate f (r) in the region [0, rm] by a constant, f (rm).
Therefore, the first integral on the right-hand side of equation (A.9) �1(t) can be approximated
analytically as

�1(t) = 1

2π
exp(Rm) f (exp(Rm))

exp(iRmt)

1 + it
. (A.10)

The second integral on the right-hand side of equation (A.9) can be calculated by employing a
standard FFT algorithm.

Summarizing: one can rewrite the Hankel transform, equation (A.1), by means of a
simple coordinate transform, equation (A.4), into a convolution type integral, equation (A.6).
Transforming to Fourier space, it decomposes into the product of two integrals, equations (A.7)
and (A.8). One of them can be calculated analytically, whereas the other can be calculated
by an FFT. Once �(t) and M(t) are known, equation (A.6) can also be treated by FFT
techniques to yield the desired Hankel transformation. In our calculations, we employed a
value rm = 10−3a11.

Appendix B. The Euler characteristic for quadratic lattices

Consider a quadratic lattice (lattice constant l) for which some elementary plaquettes (pixels,
i.e., squares of edge length l) are occupied and some are empty. The resulting spatial pattern is
represented by the configuration [u] = {u(i, j)} of the main text, with u(i, j) = 0 (1) denoting
a full (empty) site. In principle, the resulting Euler characteristic of the pattern can be calculated
by employing the property of sub-additivity, equation (20). There are three types of closed sets
participating in the pattern, coded as follows: 2-cells (square plaquettes), 1-cells (edges of
length l) and 0-cells (points). Due to the discrete geometry, 2-cells can only intersect on 1- or
0-cells and 1-cells only on 0-cells. We denote the Euler characteristic of a D-cell, D � d = 2
(D is the topological dimension of the cell), as X D . Evidently, it holds that X D = 1 for all
three cells described above.

In calculating X[u] via equation (20), track must be kept of all intersections. In order to
simplify the calculation and completely avoid intersections, we now introduce the open cell C̆
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of any closed cell C , defined as C̆ = C\∂C , where ∂C is the boundary of C . For example,
every closed square can be figured as the union of the disjoint collection of its interior, its open
edges and its point vertices, whereby there is no distinction between open and close points. The
Euler characteristic of an open convex cell X̆ D is given by [33]

X̆ D = (−1)D . (B.1)

Thus, X̆2 = 1 for an open square, X̆1 = −1 for an open edge and X̆0 = 1 for the vertices.
Since a closed square is the disjoint union of the open interior, the four open edges and the four
vertices, the above considerations together with equation (20) consistently give

X2 = 1 + 4 × (−1) + 4 × 1 = 1, (B.2)

whereas for a closed line segment (edge), which can be seen as the union of the open segment
and the two endpoints, we again consistently obtain

X1 = −1 + 2 × 1 = 1. (B.3)

Evidently, the computational advantage of working with open sets on a discrete lattice
is that all intersections vanish and the sub-additivity of equation (20) becomes strict
additivity. Let, therefore, ND[u] be the number of open D-cells present in any configuration
[u]. Equations (20) and (B.1) above imply that the Euler characteristic X[u] is a linear
superposition:

X[u] =
2∑

D=0

X̆ D ND[u] = N0[u] − N1[u] + N2[u]. (B.4)

It is straightforward to show that the quantities ND [u] are given by the expressions

N2[u] =
∑

i

∑
j

[
1 − u(i, j)

] ; (B.5)

N1[u] =
∑

i

∑
j

{
2 − u(i, j)

[
u(i + 1, j) + u(i, j + 1)

]} ; (B.6)

N0[u] =
∑

i

∑
j

[
1 − u(i, j)u(i + 1, j)u(i, j + 1)u(i + 1, j + 1)

]
. (B.7)

Equation (22) of the main text immediately follows from equations (B.4)–(B.7) above.
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